廣野元久(2018)海文堂出版
0. JMPの主な機能
・データの縮約:主成分分析・因子分析
・データの分類:対応分析・クラスタ分析・判別分析
・データの予測・因果:重回帰分析・<決定分析>・コンジョイント分析
サンプルデータ:D:\JMP user-sample
1.メニュー
「分析」>
・多変量 >多変量の相関,主成分,判別,対応,因子,多次元尺度構成,項目分析
・クラスター >
2.モニタ
2.1 ヒストグラム
・分析 >一変量の文武 >Yに性別,身長,体重 >OK :区間の変更は,Y軸ダブルクリック,「オプション」で箱ひげ図
2.3 相関と散布図
・分析 >2変量
・分析 >多変量 >多変量の相関 >全部「Y」にほりこむ >OK >散布図からヒストグラムも作成可能
・3次元散布図 > グラフ > 3次元散布図
3.主成分
・多変量 >主成分分析 >すべて「Y」へ:「Z」にいれた変数は主成分には含まれないが,プロットされるので解釈に役立つ:「By」に入れたグループごとに,レポートが作成される
<推定法>デフォルト → 勝手に下から選ぶ,
・欠損値がないときには,「リストワイズ」
・欠損あり + 列11以上/行5001以上/行より列が多い は,「ペアワイズ」
・欠損あり + 上以外 は, REML
REML 制限最尤法 欠損があってもすべてのデータを使用,欠損がないときは自動的にリストワイズになる。小規模データに適用する
最尤法 REMLと同じ。大規模データに適用する
ロバスト 欠損値があってもすべてのデータを使用。外れ値がある場合に有用
リストワイズとペアワイズは,ピアソンの積率相関係数を使用
横長オプション 欠損値のある行を除く
4. 対応分析
・ データー表 : クロス集計表・01型データ表
(例)「8人の好物」 氏名・好物(品名)・01データ > 二変量の関係 > 氏名をX,好物をY,度数を度数,→ 分割表に対する分析(一番上)の三角から「対応分析」→ 「詳細」
・ 特異値: 相関係数??
5. クラスター
6. 判別
7. 決定木